Semi-Supervised Learning with Manifold Fitted Graphs
نویسندگان
چکیده
In this paper, we propose a locality-constrained and sparsity-encouraged manifold fitting approach, aiming at capturing the locally sparse manifold structure into neighborhood graph construction by exploiting a principled optimization model. The proposed model formulates neighborhood graph construction as a sparse coding problem with the locality constraint, therefore achieving simultaneous neighbor selection and edge weight optimization. The core idea underlying our model is to perform a sparse manifold fitting task for each data point so that close-by points lying on the same local manifold are automatically chosen to connect and meanwhile the connection weights are acquired by simple geometric reconstruction. We term the novel neighborhood graph generated by our proposed optimization model M-Fitted Graph since such a graph stems from sparse manifold fitting. To evaluate the robustness and effectiveness of M-fitted graphs, we leverage graph-based semi-supervised learning as the testbed. Extensive experiments carried out on six benchmark datasets validate that the proposed M-fitted graph is superior to stateof-the-art neighborhood graphs in terms of classification accuracy using popular graph-based semisupervised learning methods.
منابع مشابه
Manifold-preserving graph reduction for sparse semi-supervised learning
Representing manifolds using fewer examples has the advantages of eliminating the influence of outliers and noisy points and simultaneously accelerating the evaluation of predictors learned from the manifolds. In this paper, we give the definition of manifold-preserving sparse graphs as a representation of sparsified manifolds and present a simple and efficient manifold-preserving graph reducti...
متن کاملA Semi-supervised Method for Multimodal Classification of Consumer Videos
In large databases, the lack of labeled training data leads to major difficulties in classification. Semi-supervised algorithms are employed to suppress this problem. Video databases are the epitome for such a scenario. Fortunately, graph-based methods have shown to form promising platforms for Semi-supervised video classification. Based on multimodal characteristics of video data, different fe...
متن کاملLocality sensitive hashing for fast computation of correlational manifold learning based feature space transformations
Manifold learning based techniques have been found to be useful for feature space transformations and semi-supervised learning in speech processing. However, the immense computational requirements in building neighborhood graphs have hindered the application of these techniques to large speech corpora. This paper presents an approach for fast computation of neighborhood graphs in the context of...
متن کاملSpectral Bandits for Smooth Graph Functions with Applications in Recommender Systems
Smooth functions on graphs have wide applications in manifold and semi-supervised learning. In this paper, we study a bandit problem where the payoffs of arms are smooth on a graph. This framework is suitable for solving online learning problems that involve graphs, such as content-based recommendation. In this problem, each recommended item is a node and its expected rating is similar to its n...
متن کاملManifold Ranking using Hessian Energy
In recent years, learning on manifolds has attracted much attention in the academia community. The idea that the distribution of real-life data forms a low dimensional manifold embedded in the ambient space works quite well in practice, with applications such as ranking, dimensionality reduction, semi-supervised learning and clustering. This paper focuses on ranking on manifolds. Traditional ma...
متن کامل